侵权投诉
订阅
纠错
加入自媒体

东丽通过分子结构重组及增加置换基实现太阳能材料5.5%的转换效率

2009-03-30 09:45
老猫
关注


图1:实现p型及n型材料间能级差的扩大、以及pn结界面表面积的扩大。数据提供:东丽

 
图2:有机薄膜太阳能电池的发电原理。由于pn结界面的能级差异,电子与空穴发生分离。数据提供:东丽


 
图3:形成p型及n型材料的异种分子间能级差异越大,开路电压越高。数据提供:东丽

图4:此次试制的有机薄膜太阳能电池。数据提供:东丽

  3月30日消息,东丽开发出了可在有机薄膜太阳能电池上实现5.5%转换效率的p型(供体)有机半导体材料。此次p型有机半导体材料的亮点在于,通过在分子设计及合成方面下工夫,实现了2个目标。一是通过扩大与n型(受体)有机半导体材料之间的能级(空间电位)差,实现了约1V的较高开路电压。二是通过涂覆与n型半导体材料的分散混合液形成pn结时,能够扩大单位体积中pn结界面的表面积(图1)。

  之所以扩大p型及n型材料的能级差,是为了得到较高的开路电压。此次的p型有机半导体材料是在已有的噻吩(Thiophene)类材料上通过重组分子结构实现的。

  在有机薄膜太阳能电池中,通过光吸收形成的激子(电子与空穴成对存在的分子激发状态)在pn结的界面上扩散,由于pn结界面的能级不同,使得电子与空穴发生分离(图2)。在一般状态下,激子不会分离出电子及空穴。形成p型及n型材料的异种分子间能级差异越大,则越容易分离(图3)。

  之所以扩大单位体积的pn结界面的表面积,是为了缩短激子的扩散距离。pn结的界面增大,通过光照射在p型有机半导体中激发的激子,能够立即到达n型半导体材料。

  此次的p型有机半导体材料通过增加附属置换基,同时实现了较高的结晶性能、以及与n型有机半导体材料的溶解性。由此更为理想地实现了通过n型及p型有机半导体材料的混合、扩大pn结表面积的“本体异质(Bulk Heterojunction)”结构。

  东丽采用此次的n型半导体材料试制成功的有机薄膜太阳能电池(图4)的数据如下。在采用模拟阳光的测定中,元件面积为0.25cm2时,转换效率为5.52%,短路电流为9.72mA/cm2,开路电压为0.99V,曲线因数为0.574。元件面积为0.04cm2时,转换效率为6.0%,短路电流为10.58mA/cm2,开路电压为0.99V,曲线因数为0.573。而在采用白色光的测定中,元件面积为0.25cm2时,转换效率为10.8%,短路电流为22.16mA/cm2,开路电压为1.02V,曲线因数为0.477。

  与此相比,作为由国际性评估机构测定的有机薄膜型太阳能电池的特性,美国Konarka Technologies发布的转换效率5.15%是迄今为止的全球最高的效率值。不过,Konarka的数据是在元件面积大得多的1cm2条件下的测定值。如果东丽要强调已经超过该数值,就有必要公布在相同面积下测定的数据。(编辑:曾聪)

声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号